Social Capital and Social Resilience: Different Approaches for Different Disasters

Peter N. Peregrine, Lawrence University, and Human Relations Area Files Advanced Research Center at Yale University
Late Antique
Little Ice Age
536 to ca.
560 CE
caused by two massive volcanic eruptions
Resilience to Natural Disasters

• **Resilience**: “to successfully avoid crossing into an undesirable system regime, or to succeed in crossing back to into a desirable one” following a disaster (Walker, Holling, Carpenter and Kinzig 2004).

• **Flexibility Theory**: More “flexible” social structures provide greater resilience to disaster than more “rigid” social structures.

• **Tightness Theory**: Societies with stronger social norms that are adhered to rigidly are more resilient to disaster.
Cases

- Temperature change as percent of total (green)
- Social change as percent of total (blue)
Variables

• **Independent**
 - **Corporate-Exclusionary Index**: five variables measuring the extent to which political participation, community orientation, and interaction across communities within and outside the polity is encouraged by leaders.
 - **Looseness-Tightness Index**: six variables measuring the strength of social norms and the degree to which they are enforced.

• **Dependent**
 - Six variables measuring change following the catastrophic natural disaster: Population, Health, Conflict, and Community, Regional, and Ritual Organization. Also the **Social Change Index** combining all six variables.
Results

<table>
<thead>
<tr>
<th>One-tailed Pearson correlations</th>
<th>Social Change Index</th>
<th>Controlling for political hierarchy</th>
<th>Bayes Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corporate-Exclusionary Index</td>
<td>.463 (p < .02)</td>
<td>.537 (p < .009)</td>
<td>.716</td>
</tr>
<tr>
<td>Looseness-Tightness Index</td>
<td>.374 (p < .052)</td>
<td>.187 (p < .065)</td>
<td>1.587</td>
</tr>
</tbody>
</table>

Support for “Flexibility Theory” but not for “Tightness Theory”

WHY?
Discussion

• LALIA marks a catastrophic disaster, and “Flexibility Theory” applies well in that context, but.
• “Tightness Theory” appears to apply well to smaller, episodic disasters. WHY?
• Catastrophic disasters require society-wide responses = bridging social capital
• Episodic disasters require community responses = bonding social capital
Social Capital and Social Resilience

• **Social Capital**: social networks and interpersonal relationships that tie communities together

• **Bridging Social Capital**: networks of social ties that link diverse individuals and groups together across and between communities

• **Bonding Social Capital**: inter-relational ties that bond together individuals within communities and social groups
Policy Implications

• Build **bridging social capital** where there are catastrophic hazards
 = foster local participation in planning and decision-making;
 ongoing communication across agencies and stakeholders
• Build **bonding social capital** where there are episodic hazards
 = support community-building organizations and activities
• Build **both** through collaborative forums.
Takeaway

We need to design risk-reducing social capital the same way we design risk-reducing infrastructure, with specific hazards in mind.
Research was sponsored by the Army Research Office and was accomplished under Contract Number W911NF-17-1-0441. The views and conclusions contained in this document are those of the author and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Office or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein.

Peter N. Peregrine
Lawrence University
711 E Boldt Way,
Appleton, WI 54911
920-832-7684
peter.n.peregrine@lawrence.edu